

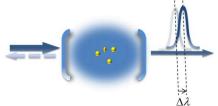
Biosensing via controlling light at the nanoscale

Feng Liang (fliang2@mgh.harvard.edu)
Anesthesia department of MGH, Charlestown, MA 02129, USA

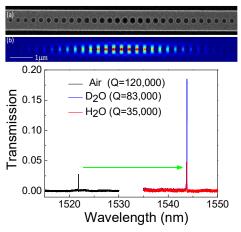
Nanobeam Cavity

Silicon photonic crystal biosensor (Lab-on-a-chip)

Motivation

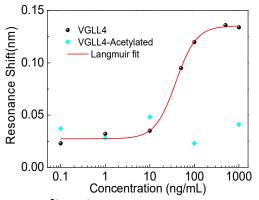

The key to make a good sensor is to enhance the interaction between photons and molecules

Challenge


- Most molecules are non-fluorescent
- Scattering is weak because optical diffraction limit prevents light focusing at the molecule scale

Solution

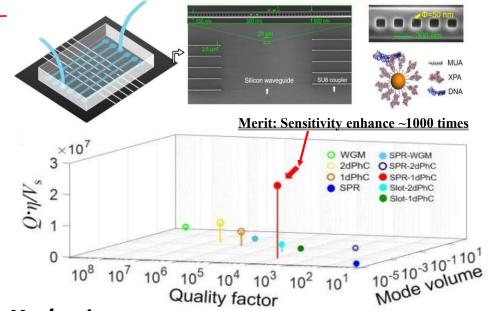
Build an optical cavity to trap photons, increase the interaction time between photons and molecules.



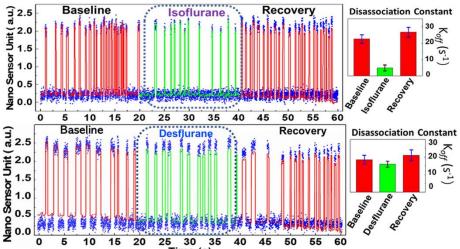
Device: photonic crystal cavity

Application: Study protein affinity

Background: Cardiac cell regeneration is regulated by TEAD/VGLL4
Result: Acetylated VGLL4 lost affinity to TEAD


Application: Diagnostics

Background: No diagnostics biomarkers for Alzheimer's disease in blood *Result*: Tau/Aβ as potential biomarkers


Sensitivity (pg/mL)	PBS	Serum
Nanobeam	0.01	1
Gold standard assay	0.1-1	100

Impact

- Single nanoparticle level sensitivity (1.8nm)
- Widely applicable to measure small protein affinity (~kDa) And **Single molecular interaction study**

<u>Mechanism:</u> Single molecular interaction study is based On the gold particle enhanced nanobeam cavity sensor.

Application: Single molecular study showed Isoflurane, but not Desflurane impairs the interaction of ADP and ATP synthase.